Standardized Scalp Massage Results in Increased Hair Thickness by Inducing Stretching Forces to Dermal Papilla Cells in the Subcutaneous Tissue
نویسندگان
چکیده
OBJECTIVE In this study, we evaluated the effect of scalp massage on hair in Japanese males and the effect of stretching forces on human dermal papilla cells in vitro. METHODS Nine healthy men received 4 minutes of standardized scalp massage per day for 24 weeks using a scalp massage device. Total hair number, hair thickness, and hair growth rate were evaluated. The mechanical effect of scalp massage on subcutaneous tissue was analyzed using a finite element method. To evaluate the effect of mechanical forces, human dermal papilla cells were cultured using a 72-hour stretching cycle. Gene expression change was analyzed using DNA microarray analyses. In addition, expression of hair cycle-related genes including IL6, NOGGIN, BMP4, and SMAD4 were evaluated using real-time reverse transcription-polymerase chain reaction. RESULTS Standardized scalp massage resulted in increased hair thickness 24 weeks after initiation of massage (0.085 ± 0.003 mm vs 0.092 ± 0.001 mm). Finite element method showed that scalp massage caused z-direction displacement and von Mises stress on subcutaneous tissue. In vitro, DNA microarray showed gene expression change significantly compared with nonstretching human dermal papilla cells. A total of 2655 genes were upregulated and 2823 genes were downregulated. Real-time reverse transcription-polymerase chain reaction demonstrated increased expression of hair cycle-related genes such as NOGGIN, BMP4, SMAD4, and IL6ST and decrease in hair loss-related genes such as IL6. CONCLUSIONS Stretching forces result in changes in gene expression in human dermal papilla cells. Standardized scalp massage is a way to transmit mechanical stress to human dermal papilla cells in subcutaneous tissue. Hair thickness was shown to increase with standardized scalp massage.
منابع مشابه
Miliacin Associated with Polar Lipids: Effect on Growth Factors Excretion and Extracellular Matrix of the Dermal Papilla Hair Follicle Model Maintained in Survival Conditions
Background: The Dermal Papilla (DP) consists in specialized dermal fibroblasts located at the base of hair follicles and secreting extracellular matrix, especially collagen and glycosaminoglycans. DP cells are responsible for the production of hair fibers, by inducing anagen phase, and by maintaining the hair in this growth phase. Miliacin (contained in millet oil) is known for its healing prop...
متن کاملمقایسۀ ساختار و فراساختار فولیکول های مو و پر
Formations of feather and hair follicles during embryonic stage are nearly similar. The aim of the present research is to study the similarities and differences between these two follicles in adult pigeons and rats. To fulfill this task, feather and hair follicles were dissected and processed for light and electron microscopy. The results demonstrated that these two follicles were similar in ha...
متن کاملInhibition of Hair Growth by Testosterone in the Presence of Dermal Papilla Cells from the Frontal Bald Scalp of the Postpubertal Stumptailed Macaque1.
Hair-follicle regression in the bald scalps of stumptailed macaques develops after puberty, which corresponds to an elevation of serum testosterone and dihydrotestosterone. Using the cultured cells from the pre- and postpubertal macaques, we examined the role of dermal papilla cells in testosterone-induced inhibition of outer root sheath cell proliferation. Testosterone showed no effects on pro...
متن کاملEstrogen Leads to Reversible Hair Cycle Retardation through Inducing Premature Catagen and Maintaining Telogen
Estrogen dysregulation causes hair disorder. Clinical observations have demonstrated that estrogen raises the telogen/anagen ratio and inhibits hair shaft elongation of female scalp hair follicles. In spite of these clinical insights, the properties of estrogen on hair follicles are poorly dissected. In the present study, we show that estrogen induced apoptosis of precortex cells and caused pre...
متن کاملHair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice
OBJECTIVE Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by inj...
متن کامل